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RxODE is pharmacometric simulation software as an 
open-source R package
• Written by Wenping Wang and Matt Fidler, available on CRAN1 and 

GitHub2, and described in a tutorial in CPT:PSP3

• Simulation of ODEs was already possible in R (using deSolve), but 
was slow and virtually impossible to code with flexible dosing 
history

• RxODE has rapid execution due to compilation in C 
• RxODE allows fully flexible dosing history
• Stable and mature software for Windows, OS X, Linux
• Requires external compilers (provided by Rtools on Windows)

• New developments (alpha stage): parallelisation to increase speed 
even further

[1] CRAN: https://cran.r-project.org/web/packages/RxODE/index.html
[2] GitHub: https://github.com/nlmixrdevelopment/RxODE
[3] Wang W et al. CPT:PSP (2016) 5, 3–10. 
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https://cran.r-project.org/web/packages/RxODE/index.html
https://github.com/nlmixrdevelopment/RxODE


Basic example
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library(RxODE)

ode1 <- "
K12 = CL2/V;
K21 = CL2/V2;
d/dt(centr)  = K21*periph-K12*centr-(VMAX*centr/V)/(KM+centr/V)-CL*centr/V;
d/dt(periph) =-K21*periph+K12*centr;
C1=centr/V;
C2=periph/V2;

"
mod1 <- RxODE(model = ode1, modName = 'mod1')

ev <- eventTable()
ev$add.dosing(

dose = 10,
nbr.doses = 1,
dosing.to = 1,
rate = 2,
start.time = 0

)
ev$add.sampling(seq(0,120,0.1))
Params <- c(VMAX=2000, KM=700, CL=4, CL2=3, V=70, V2=30)
Res <- as.data.frame(mod1$run(Params, ev))

xyplot(C1+C2~time,data=Res,type='l',ylab="Concentration",xlab="Time")



Single dose
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Adding extra doses (expand the event table)
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ev$add.dosing(
dose = 20,
nbr.doses = 3,
dosing.to = 1,
dosing.interval=15,
rate = 2,
start.time = 45

)
res<-as.data.frame(mod1$run(Params, ev))

xyplot(C1+C2~time,data=res,type='l',ylab="Concentration",xlab="Time")



Multiple dose
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Generate a whole population of full individual IPRED curves 
starting from a NONMEM dataset (study this at home )
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library(data.table)
NMdat <- fread(file.path(datapath, "run100.csv"))
EBEs <- unique(NMdat[, .(ID, STD, VMAX, KM, CL, CL2, V, V2)])
subs <- unique(NMdat$ID)
N <- length(subs)
s = lapply(1:N, function(i) {
params <- EBEs[ID == subs[i]]
ev <- eventTable()
DOSi <- NMdat[ID == subs[i] & AMT > 0]
DOSi[, nTime := shift(TIME, 1L, type = 'lead')]
timei <- NMdat$TIME[NMdat$ID == subs[i]]
for (j in 1:length(DOSi$AMT)) {
dos <- DOSi[j, ]
ev$add.dosing(dose = dos$AMT,nbr.doses = 1,dosing.to = 1,

rate = dos$RATE,start.time = dos$TIME)
#generate prediction time points (many points at dose and fewer at later times)
if (is.na(dos$nTime)) {dos$nTime <- dos$TIME + 720}
timei <-c(timei, dos$TIME + exp(seq(log(+0.01),log(dos$nTime - dos$TIME - 0.01),

(log(dos$nTime - dos$TIME - 0.01) - log(+0.01)) / 100)))
}
times <- sort(unique(timei))
ev$add.sampling(times)
x <- as.data.table(mod1$run(params, ev))
x[, ID := subs[i]]
setnames(x, "C1", "IPRED")

})
df.sim = as.data.table(do.call("rbind", s))



You need to simulate before you can estimate

• With simulation covered, you can start to think about 
estimation

• Combine the simulation core with estimation routines and 
you get:

nlmixr!
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nlmixr is an open-source R package

• Written by Wenping Wang and Matt Fidler, and available on GitHub 
and CRAN1,2:
• builds on RxODE3

• combined with nlme and SAEM estimation routines, provides an R 
package for parameter estimation in nonlinear mixed effect models

• much, more to come (e.g. adaptive Gaussian quadrature for non-
continuous data, and with FOCE-I under development)

• nlmixr is completely free and open, and does not depend on any 
other commercial tool such as NONMEM or Monolix

• nlmixr provides an efficient and versatile way to specify 
pharmacometric models (both closed-form and ODEs) and dosing 
scenarios, with rapid execution due to compilation in C 

[1] https://github.com/nlmixrdevelopment/nlmixr
[2] https://cran.r-project.org/web/packages/RxODE/index.html
[3] Wang W et al. CPT:PSP (2016) 5, 3–10. 
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https://github.com/nlmixrdevelopment/nlmixr
https://cran.r-project.org/web/packages/RxODE/index.html


nlmixr is an open-source R package

• Models are defined using a unified user interface (UUI): common input 
and output structure for the various estimation algorithms

• xpose.nlmixr1 written by Justin Wilkins provides linkage to the new Xpose 
package2, written by Ben Guiastrennec, feeding the uniform output into a 
highly flexible diagnostics package

• The shinyMixR3 project management tool written by Richard Hooijmaijers 
and Teun Post provides an interface to nlmixr from both the R command 
line and a user-friendly browser-based Shiny dashboard application 

• nlmixr requires access to compilers (e.g. using Rtools) and Python: both a 
full-package windows installer is available, and instructions on managing 
your own installation

• Documentation is available in the form of a bookdown (nlmixr.github.io) 
written and curated by Teun Post

• Runs on Linux, Windows, and OS X

[1] https://github.com/nlmixrdevelopment/xpose.nlmixr
[2] https://CRAN.R-project.org/package=xpose
[3] https://github.com/RichardHooijmaijers/shinyMixR
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https://nlmixrdevelopment.github.io/nlmixr_bookdown/index.html
https://github.com/nlmixrdevelopment/xpose.nlmixr
https://cran.r-project.org/package=xpose
https://github.com/RichardHooijmaijers/shinyMixR


The unified user interface
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• Models are defined using a function containing an 
initialisation block (ini) and a model definition block 
(model)
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mod1 <- function() {
ini({

})
model({

})
}



The unified user interface
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• The ini block defines the parameters 
• Thetas defined using assign operators (<- or =)
• Residual error defined using assign operators (<- or =)
• Etas defined using a model formula (~)

• Parameter names, starting values, labels (using #), bounds

nlmixr development team

mod1 <- function() {
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc = log(90) #log V (L)
lKa <- 1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Ka ~ 0.1 #IIV Ka
eta.Cl + eta.Vc ~ c(0.1,

0.005, 0.1)
})
model({

})
}



The unified user interface
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• The model block defines 
• the relationship between thetas and etas
• the model structure using either ODEs or closed-form solutions
• the residual error structure and where it is applied
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mod1 <- function(){
ini({

})
model({
Cl  <- exp(lCl + eta.Cl)
Vc  <- exp(lVc + eta.Vc)
KA  <- exp(lKa + eta.Ka)
kel <- Cl / Vc
d/dt(depot) = -KA*depot
d/dt(centr) = KA*depot-kel*centr
cp = centr / Vc
cp ~ prop(prop.err)

})
}



Parameterisation and mu-referencing
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• For SAEM, parameters must be defined using 'mu-
referencing' and this implies estimating log-parameters with 
the IIV added on the log-scale

• For nlme, mu-referencing is not strictly required, but is shown 
to provide superior estimation results
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Data$logWT70 <- log(Data$WT/70)

mod1 <- function(){
ini({
## For SAEM parameters must be defined using 'mu-referencing'
## For nlme mu-referencing is not strictly required but is shown to provide
##  superior estimation results
lCl <- 1.6 #log Cl (L/hr)
AllomCl <- 0.75 #log Cl (L/hr)
## ..... 
eta.Cl ~ 0.1 # IIV Cl
## ..... 

})
model({
## Parameters are defined in terms of the initial estimates
Cl <- exp(lCl + eta.Cl)
## or for implementing covariate effects:
Cl <- exp(lCl + eta.Cl + logWT70*AllomCl)
## Data transformations should be done outside the model definition
## ..... 

})
}



Full example with proportional and additive error
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mod1 <- function(){
ini({
## Initial conditions for population parameters (sometimes 
## called theta parameters) are defined by either `<-` or '=' 
lCl <- 1.6 #log Cl (L/hr)
## Note that simple expressions that evaluate to a number are 
## OK for defining initial conditions (like in R) 
lVc = log(90) #log V (L) 
## Also a comment on a parameter is captured as a parameter label 
lKA <- 0.1 #log Ka (1/hr)
## Bounds may be specified by c(lower, est, upper), like NONMEM:
## Residuals errors are assumed to be population parameters 
prop.err <- c(0, 0.2, 1)
add.err  <- c(0,0.01)
## Initial estimate for ka IIV variance
## Labels work for single parameters
eta.Cl ~ 0.1 # IIV Cl
## For correlated parameters, you specify the names of each
## correlated parameter separated by a addition operator `+`
## and the left handed side specifies the lower triangular
## matrix initial of the covariance matrix.
eta.Vc + eta.KA ~ c(0.1,

0.005, 0.1)
## Note that labels are not defined for correlated parameters. 

})
model({
## Parameters are defined in terms of the initial estimates
Cl <- exp(lCl + eta.Cl)
Vc <- exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
## Next, the differential equations are defined
kel <- Cl / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KA*depot-kel*centr;
## And the concentration is then calculated
cp = centr / Vc;
## Last, nlmixr is told that the plasma concentration follows
## a combined proportional/additive error
cp ~ prop(prop.err)+add(add.err)

})
}



And using a closed-form solution
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mod1 <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc <- 4.5 #log V (L) 
lKA <- 0.1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 # IIV Cl
eta.Vc + eta.KA ~ c(0.1,

0.005, 0.1)
})
model({
Cl <- exp(lCl + eta.Cl)
Vc <- exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
## Instead of specifying the ODEs, you can use
## the linCmt() function to use closed-form solutions.
## This function determines the type of PK solved system
## to use by the parameters that are defined.  
## In this case it knows that this is a one-compartment model 
## with first-order absorption.
linCmt() ~ prop(prop.err)

})
}



The nlmixr dataset

17

• Datasets need to comply with RxODE requirements
• EVID is more complex

• 101 for bolus dose in compartment 1, 10101 for infusion in 
compartment 1

• No MDV item so no on-the-fly removal of unwanted records
• Infusions need two records: one to start infusion and one to 

stop infusion (at time of infusion stop with a negative rate)
• No SS dosing so steady state needs to be coded using multiple 

preceding doses
• NONMEM datasets can be converted using a special function 

based on code by Yuan Xiong:
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dat <- nmDataConvert(dat);



Running nlmixr 
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• nlmixr is run using the following structure:

• Currently nlme and SAEM are implemented
• Example for nlme:

• Example for SAEM:
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fit <- nlmixr(model.function,
rxode.dataset,
est = "est",
control = estControl(options))

fit <- nlmixr(mod1, 
dat, 
est = "nlme", 
control = nlmeControl(pnlsTol = .05))

fit <- nlmixr(mod1,
dat,
est = "saem",
control = saemControl(

n.burn = 200,
n.em = 300,
print = 50

))



The shinyMixR interface can manage your runs
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The shinyMixR interface can be run from R…

nlmixr development team20



…or by launching a browser session
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Where models can be edited and run…
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…and output like goodness of fit plots can be created 
using the new Xpose functionality, or using custom scripts…
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nlmixr is fully integrated with the new version of Xpose



…and individual plots as well
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Results can be exported to pdf or html
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nlmixr performance

• 4 different dose levels (10, 30, 60 and 120 mg) of 30 subjects each 
as 
• single dose (over 72h)
• multiple dose (4 daily doses)
• single and multiple dose combined
• and steady state dosing

• Range of test models: 
• 1- and 2-compartment disposition
• with and without 1st order absorption
• linear or Michaelis-Menten (MM) clearance

• A total of 42 test cases
• all IIVs were set at 30%, residual error at 20% 
• overlapping PK parameters were the same for all models

• nlmixr estimation routines compared to NONMEM FOCE-I
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Example full profiles (linear elimination)
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Example full profiles (MM elimination)
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Vc is available in all models: 
Theta estimates using NONMEM FOCE-I and ODE implementation
Horizontal black line: value used for simulation
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Red line: nlmixr/nlme estimates using ODEs
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Non MM models also implemented using closed-form solutions:
Grey line: nlmixr/nlme estimates using closed-form solutions
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SE of theta estimates for Vc are very comparable
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Residual error is well-estimated
Horizontal black line: value used for simulation
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Run times are perfectly acceptable, and often lower than 
NONMEM …but currently only single-threaded…
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For Vc, Omega (IIV) estimates are also very comparable
Horizontal black line: value used for simulation
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But if we examineVp…
the IIVs are often estimated close to zero
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…same with Ka…
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…and Q
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A large fraction of runs with IIV=0 for Ka for 500 sparse datasets: 
91.1% for nlmixr/nlme vs. 2.2% for NONMEM FOCE-I
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Disappointing results?

• Findings are in line with earlier experience with nlme
• Bob Bauer claims nlme is somewhere beween ITS and FOCE 

(personal communication)

• However, nlme in nlmixr provides a gateway into nonlinear 
mixed effect modelling for statisticians…

• With the machinery in place, the groundwork is laid for 
other/better estimation routines, like SAEM or FOCE-I…

• SAEM currently also available in nlmixr: so how does SAEM 
perform?
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Traceplot for parameters from one of the nlmixr/SAEM models
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Thetas for nlmixr/SAEM for Vc behave very nicely compared to 
NONMEM… 
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… and SEs for Vc seem to be even better estimated with 
nlmixr/SAEM than using NONMEM…
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…and IIVs for nlmixr/SAEM for Vp show none of the close to zero 
behaviour observed with nlme
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And no IIVs of zero with nlmixr/SAEM with sparse data
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nlmixr/SAEM is slower than nlmixr/nlme but still workable
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More good news?

• nlmixr also has an adaptive Gaussian quadrature algorithm 
(like NONMEM’s Laplace and higher) allowing fancy models

• nlmixr also has single subject dynamic models e.g. for 
complex system simulation and estimation (mcmc algorithm)

• Steps to implement ordered categorical models and count 
models in the SAEM algorithm

• Elementary implementation of VPC and bootstrap 
functionality

• Serious progress into multi-threaded simulation that will lead 
to multi-threaded estimation

• Implementation of FOCE-I under construction
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What’s next?

• We need you!

• Field-testing: real-life examples

• Improving computational efficiency of estimation algorithms 
(e.g. within-problem parallelisation)

• Error-trapping
• New features implementation
• Etc, etc…

• This presentation will be made available on the bookdown 
site nlmixr.github.io
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https://nlmixrdevelopment.github.io/nlmixr_bookdown/index.html

