
Pharmacometrics Network Benelux Presentation

Rik Schoemaker, PhD 
Groningen, 29 March 2018

The nlmixr development team: 
Wenping Wang, Matt Fidler, Teun Post, Richard 

Hooijmaijers, Mirjam Trame, Yuan Xiong, 
Justin Wilkins and Rik Schoemaker

RxODE and nlmixr: open-source packages 
for pharmacometric modelling in R



RxODE is pharmacometric simulation software as an 
open-source R package
• Written by Wenping Wang and Matt Fidler, available on CRAN1 and 

GitHub2, and described in a tutorial in CPT:PSP3

• Simulation of ODEs was already possible in R (using deSolve), but 
was slow and virtually impossible to code with flexible dosing 
history

• RxODE has rapid execution due to compilation in C 
• RxODE allows fully flexible dosing history
• Stable and mature software for Windows, OS X, Linux
• Requires external compilers (provided by Rtools on Windows)

• New developments (alpha stage): parallelisation to increase speed 
even further

[1] CRAN: https://cran.r-project.org/web/packages/RxODE/index.html
[2] GitHub: https://github.com/nlmixrdevelopment/RxODE
[3] Wang W et al. CPT:PSP (2016) 5, 3–10. 

nlmixr development team2

https://cran.r-project.org/web/packages/RxODE/index.html
https://github.com/nlmixrdevelopment/RxODE


Basic example

nlmixr development team3

library(RxODE)

ode1 <- "
K12 = CL2/V;
K21 = CL2/V2;
d/dt(centr)  = K21*periph-K12*centr-(VMAX*centr/V)/(KM+centr/V)-CL*centr/V;
d/dt(periph) =-K21*periph+K12*centr;
C1=centr/V;
C2=periph/V2;

"
mod1 <- RxODE(model = ode1, modName = 'mod1')

ev <- eventTable()
ev$add.dosing(

dose = 10,
nbr.doses = 1,
dosing.to = 1,
rate = 2,
start.time = 0

)
ev$add.sampling(seq(0,120,0.1))
Params <- c(VMAX=2000, KM=700, CL=4, CL2=3, V=70, V2=30)
Res <- as.data.frame(mod1$run(Params, ev))

xyplot(C1+C2~time,data=Res,type='l',ylab="Concentration",xlab="Time")



Single dose

nlmixr development team4



Adding extra doses (expand the event table)

nlmixr development team5

ev$add.dosing(
dose = 20,
nbr.doses = 3,
dosing.to = 1,
dosing.interval=15,
rate = 2,
start.time = 45

)
res<-as.data.frame(mod1$run(Params, ev))

xyplot(C1+C2~time,data=res,type='l',ylab="Concentration",xlab="Time")



Multiple dose

nlmixr development team6



Generate a whole population of full individual IPRED curves 
starting from a NONMEM dataset (study this at home )

nlmixr development team7

library(data.table)
NMdat <- fread(file.path(datapath, "run100.csv"))
EBEs <- unique(NMdat[, .(ID, STD, VMAX, KM, CL, CL2, V, V2)])
subs <- unique(NMdat$ID)
N <- length(subs)
s = lapply(1:N, function(i) {
params <- EBEs[ID == subs[i]]
ev <- eventTable()
DOSi <- NMdat[ID == subs[i] & AMT > 0]
DOSi[, nTime := shift(TIME, 1L, type = 'lead')]
timei <- NMdat$TIME[NMdat$ID == subs[i]]
for (j in 1:length(DOSi$AMT)) {
dos <- DOSi[j, ]
ev$add.dosing(dose = dos$AMT,nbr.doses = 1,dosing.to = 1,

rate = dos$RATE,start.time = dos$TIME)
#generate prediction time points (many points at dose and fewer at later times)
if (is.na(dos$nTime)) {dos$nTime <- dos$TIME + 720}
timei <-c(timei, dos$TIME + exp(seq(log(+0.01),log(dos$nTime - dos$TIME - 0.01),

(log(dos$nTime - dos$TIME - 0.01) - log(+0.01)) / 100)))
}
times <- sort(unique(timei))
ev$add.sampling(times)
x <- as.data.table(mod1$run(params, ev))
x[, ID := subs[i]]
setnames(x, "C1", "IPRED")

})
df.sim = as.data.table(do.call("rbind", s))



You need to simulate before you can estimate

• With simulation covered, you can start to think about 
estimation

• Combine the simulation core with estimation routines and 
you get:

nlmixr!

nlmixr development team8



nlmixr is an open-source R package

• Written by Wenping Wang and Matt Fidler, and available on GitHub 
and CRAN1,2:
• builds on RxODE3

• combined with nlme and SAEM estimation routines, provides an R 
package for parameter estimation in nonlinear mixed effect models

• much, more to come (e.g. adaptive Gaussian quadrature for non-
continuous data, and with FOCE-I under development)

• nlmixr is completely free and open, and does not depend on any 
other commercial tool such as NONMEM or Monolix

• nlmixr provides an efficient and versatile way to specify 
pharmacometric models (both closed-form and ODEs) and dosing 
scenarios, with rapid execution due to compilation in C 

[1] https://github.com/nlmixrdevelopment/nlmixr
[2] https://cran.r-project.org/web/packages/RxODE/index.html
[3] Wang W et al. CPT:PSP (2016) 5, 3–10. 

nlmixr development team9

https://github.com/nlmixrdevelopment/nlmixr
https://cran.r-project.org/web/packages/RxODE/index.html


nlmixr is an open-source R package

• Models are defined using a unified user interface (UUI): common input 
and output structure for the various estimation algorithms

• xpose.nlmixr1 written by Justin Wilkins provides linkage to the new Xpose 
package2, written by Ben Guiastrennec, feeding the uniform output into a 
highly flexible diagnostics package

• The shinyMixR3 project management tool written by Richard Hooijmaijers 
and Teun Post provides an interface to nlmixr from both the R command 
line and a user-friendly browser-based Shiny dashboard application 

• nlmixr requires access to compilers (e.g. using Rtools) and Python: both a 
full-package windows installer is available, and instructions on managing 
your own installation

• Documentation is available in the form of a bookdown (nlmixr.github.io) 
written and curated by Teun Post

• Runs on Linux, Windows, and OS X

[1] https://github.com/nlmixrdevelopment/xpose.nlmixr
[2] https://CRAN.R-project.org/package=xpose
[3] https://github.com/RichardHooijmaijers/shinyMixR

nlmixr development team10

https://nlmixrdevelopment.github.io/nlmixr_bookdown/index.html
https://github.com/nlmixrdevelopment/xpose.nlmixr
https://cran.r-project.org/package=xpose
https://github.com/RichardHooijmaijers/shinyMixR


The unified user interface

11

• Models are defined using a function containing an 
initialisation block (ini) and a model definition block 
(model)

nlmixr development team

mod1 <- function() {
ini({

})
model({

})
}



The unified user interface

12

• The ini block defines the parameters 
• Thetas defined using assign operators (<- or =)
• Residual error defined using assign operators (<- or =)
• Etas defined using a model formula (~)

• Parameter names, starting values, labels (using #), bounds

nlmixr development team

mod1 <- function() {
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc = log(90) #log V (L)
lKa <- 1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Ka ~ 0.1 #IIV Ka
eta.Cl + eta.Vc ~ c(0.1,

0.005, 0.1)
})
model({

})
}



The unified user interface

13

• The model block defines 
• the relationship between thetas and etas
• the model structure using either ODEs or closed-form solutions
• the residual error structure and where it is applied

nlmixr development team

mod1 <- function(){
ini({

})
model({
Cl  <- exp(lCl + eta.Cl)
Vc  <- exp(lVc + eta.Vc)
KA  <- exp(lKa + eta.Ka)
kel <- Cl / Vc
d/dt(depot) = -KA*depot
d/dt(centr) = KA*depot-kel*centr
cp = centr / Vc
cp ~ prop(prop.err)

})
}



Parameterisation and mu-referencing

14

• For SAEM, parameters must be defined using 'mu-
referencing' and this implies estimating log-parameters with 
the IIV added on the log-scale

• For nlme, mu-referencing is not strictly required, but is shown 
to provide superior estimation results

nlmixr development team

Data$logWT70 <- log(Data$WT/70)

mod1 <- function(){
ini({
## For SAEM parameters must be defined using 'mu-referencing'
## For nlme mu-referencing is not strictly required but is shown to provide
##  superior estimation results
lCl <- 1.6 #log Cl (L/hr)
AllomCl <- 0.75 #log Cl (L/hr)
## ..... 
eta.Cl ~ 0.1 # IIV Cl
## ..... 

})
model({
## Parameters are defined in terms of the initial estimates
Cl <- exp(lCl + eta.Cl)
## or for implementing covariate effects:
Cl <- exp(lCl + eta.Cl + logWT70*AllomCl)
## Data transformations should be done outside the model definition
## ..... 

})
}



Full example with proportional and additive error

nlmixr development team15

mod1 <- function(){
ini({
## Initial conditions for population parameters (sometimes 
## called theta parameters) are defined by either `<-` or '=' 
lCl <- 1.6 #log Cl (L/hr)
## Note that simple expressions that evaluate to a number are 
## OK for defining initial conditions (like in R) 
lVc = log(90) #log V (L) 
## Also a comment on a parameter is captured as a parameter label 
lKA <- 0.1 #log Ka (1/hr)
## Bounds may be specified by c(lower, est, upper), like NONMEM:
## Residuals errors are assumed to be population parameters 
prop.err <- c(0, 0.2, 1)
add.err  <- c(0,0.01)
## Initial estimate for ka IIV variance
## Labels work for single parameters
eta.Cl ~ 0.1 # IIV Cl
## For correlated parameters, you specify the names of each
## correlated parameter separated by a addition operator `+`
## and the left handed side specifies the lower triangular
## matrix initial of the covariance matrix.
eta.Vc + eta.KA ~ c(0.1,

0.005, 0.1)
## Note that labels are not defined for correlated parameters. 

})
model({
## Parameters are defined in terms of the initial estimates
Cl <- exp(lCl + eta.Cl)
Vc <- exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
## Next, the differential equations are defined
kel <- Cl / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KA*depot-kel*centr;
## And the concentration is then calculated
cp = centr / Vc;
## Last, nlmixr is told that the plasma concentration follows
## a combined proportional/additive error
cp ~ prop(prop.err)+add(add.err)

})
}



And using a closed-form solution

nlmixr development team16

mod1 <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc <- 4.5 #log V (L) 
lKA <- 0.1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 # IIV Cl
eta.Vc + eta.KA ~ c(0.1,

0.005, 0.1)
})
model({
Cl <- exp(lCl + eta.Cl)
Vc <- exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
## Instead of specifying the ODEs, you can use
## the linCmt() function to use closed-form solutions.
## This function determines the type of PK solved system
## to use by the parameters that are defined.  
## In this case it knows that this is a one-compartment model 
## with first-order absorption.
linCmt() ~ prop(prop.err)

})
}



The nlmixr dataset

17

• Datasets need to comply with RxODE requirements
• EVID is more complex

• 101 for bolus dose in compartment 1, 10101 for infusion in 
compartment 1

• No MDV item so no on-the-fly removal of unwanted records
• Infusions need two records: one to start infusion and one to 

stop infusion (at time of infusion stop with a negative rate)
• No SS dosing so steady state needs to be coded using multiple 

preceding doses
• NONMEM datasets can be converted using a special function 

based on code by Yuan Xiong:

nlmixr development team

dat <- nmDataConvert(dat);



Running nlmixr 

18

• nlmixr is run using the following structure:

• Currently nlme and SAEM are implemented
• Example for nlme:

• Example for SAEM:

nlmixr development team

fit <- nlmixr(model.function,
rxode.dataset,
est = "est",
control = estControl(options))

fit <- nlmixr(mod1, 
dat, 
est = "nlme", 
control = nlmeControl(pnlsTol = .05))

fit <- nlmixr(mod1,
dat,
est = "saem",
control = saemControl(

n.burn = 200,
n.em = 300,
print = 50

))



The shinyMixR interface can manage your runs

nlmixr development team19



The shinyMixR interface can be run from R…

nlmixr development team20



…or by launching a browser session

nlmixr development team21



Where models can be edited and run…

nlmixr development team22



…and output like goodness of fit plots can be created 
using the new Xpose functionality, or using custom scripts…

nlmixr development team23

nlmixr is fully integrated with the new version of Xpose



…and individual plots as well

nlmixr development team24



Results can be exported to pdf or html

nlmixr development team25



nlmixr performance

• 4 different dose levels (10, 30, 60 and 120 mg) of 30 subjects each 
as 
• single dose (over 72h)
• multiple dose (4 daily doses)
• single and multiple dose combined
• and steady state dosing

• Range of test models: 
• 1- and 2-compartment disposition
• with and without 1st order absorption
• linear or Michaelis-Menten (MM) clearance

• A total of 42 test cases
• all IIVs were set at 30%, residual error at 20% 
• overlapping PK parameters were the same for all models

• nlmixr estimation routines compared to NONMEM FOCE-I

nlmixr development team26



Example full profiles (linear elimination)

nlmixr development team27

Individual concentration profiles

Time (h)

Co
nc

en
tra

tio
n (

mg
/L)

0.01
0.1
1
10
100
1000

ID:1/Dose:60 mg ID:2/Dose:10 mg

0.01
0.1
1
10
100
1000

ID:3/Dose:10 mg ID:4/Dose:120 mg

0.01
0.1
1
10
100
1000

ID:5/Dose:60 mg ID:6/Dose:30 mg

0.01
0.1
1
10
100
1000

ID:7/Dose:120 mg ID:8/Dose:30 mg

0.01
0.1
1
10
100
1000

0 50 100 150 200 250 300

ID:9/Dose:120 mg

0 50 100 150 200 250 300

ID:10/Dose:30 mg

                   



Example full profiles (MM elimination)

nlmixr development team28

0 50 100 200
5

20
10

0
Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:106/Dose:10 mg

0 50 100 200

20
0

10
00

50
00

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:107/Dose:60 mg

0 50 100 200

50
0

20
00

10
00

0

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:108/Dose:120 mg

0 50 100 200

10
0

50
0

50
00

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:109/Dose:60 mg

0 50 100 200

50
0

20
00

10
00

0

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:110/Dose:120 mg

0 50 100 200

50
20

0
20

00

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:111/Dose:30 mg

0 50 100 200

5
20

10
0

50
0

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:112/Dose:10 mg

0 50 100 200

50
0

20
00

10
00

0

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:113/Dose:120 mg

0 50 100 200

50
0

20
00

10
00

0

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:114/Dose:120 mg

0 50 100 200

20
0

10
00

50
00

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:115/Dose:60 mg

0 50 100 200

50
20

0
10

00

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:116/Dose:30 mg

0 50 100 200

5
20

10
0

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:117/Dose:10 mg

0 50 100 200

5
20

10
0

50
0

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:118/Dose:10 mg

0 50 100 200

50
20

0
20

00

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:119/Dose:60 mg

0 50 100 200

50
20

0
10

00

Time(h)

Co
nc

en
tra

tio
n (

mg
/

ID:120/Dose:30 mg

                         



Vc is available in all models: 
Theta estimates using NONMEM FOCE-I and ODE implementation
Horizontal black line: value used for simulation

nlmixr development team29



Red line: nlmixr/nlme estimates using ODEs

nlmixr development team30



Non MM models also implemented using closed-form solutions:
Grey line: nlmixr/nlme estimates using closed-form solutions

nlmixr development team31



SE of theta estimates for Vc are very comparable

nlmixr development team32



Residual error is well-estimated
Horizontal black line: value used for simulation

nlmixr development team33



Run times are perfectly acceptable, and often lower than 
NONMEM …but currently only single-threaded…

nlmixr development team34



For Vc, Omega (IIV) estimates are also very comparable
Horizontal black line: value used for simulation

nlmixr development team35



But if we examineVp…
the IIVs are often estimated close to zero

nlmixr development team36



…same with Ka…

nlmixr development team37



…and Q

nlmixr development team38



A large fraction of runs with IIV=0 for Ka for 500 sparse datasets: 
91.1% for nlmixr/nlme vs. 2.2% for NONMEM FOCE-I

nlmixr development team39



Disappointing results?

• Findings are in line with earlier experience with nlme
• Bob Bauer claims nlme is somewhere beween ITS and FOCE 

(personal communication)

• However, nlme in nlmixr provides a gateway into nonlinear 
mixed effect modelling for statisticians…

• With the machinery in place, the groundwork is laid for 
other/better estimation routines, like SAEM or FOCE-I…

• SAEM currently also available in nlmixr: so how does SAEM 
perform?

nlmixr development team40



Traceplot for parameters from one of the nlmixr/SAEM models

nlmixr development team41



Thetas for nlmixr/SAEM for Vc behave very nicely compared to 
NONMEM… 

nlmixr development team42



… and SEs for Vc seem to be even better estimated with 
nlmixr/SAEM than using NONMEM…

nlmixr development team43



…and IIVs for nlmixr/SAEM for Vp show none of the close to zero 
behaviour observed with nlme

nlmixr development team44



And no IIVs of zero with nlmixr/SAEM with sparse data

nlmixr development team45



nlmixr/SAEM is slower than nlmixr/nlme but still workable

nlmixr development team46



More good news?

• nlmixr also has an adaptive Gaussian quadrature algorithm 
(like NONMEM’s Laplace and higher) allowing fancy models

• nlmixr also has single subject dynamic models e.g. for 
complex system simulation and estimation (mcmc algorithm)

• Steps to implement ordered categorical models and count 
models in the SAEM algorithm

• Elementary implementation of VPC and bootstrap 
functionality

• Serious progress into multi-threaded simulation that will lead 
to multi-threaded estimation

• Implementation of FOCE-I under construction

nlmixr development team47



What’s next?

• We need you!

• Field-testing: real-life examples

• Improving computational efficiency of estimation algorithms 
(e.g. within-problem parallelisation)

• Error-trapping
• New features implementation
• Etc, etc…

• This presentation will be made available on the bookdown 
site nlmixr.github.io

nlmixr development team48

https://nlmixrdevelopment.github.io/nlmixr_bookdown/index.html

